Postsynaptic calcium transients evoked by activation of individual hippocampal mossy fiber synapses.

نویسندگان

  • C A Reid
  • R Fabian-Fine
  • A Fine
چکیده

Control of Ca(2+) within dendritic spines is critical for excitatory synaptic function and plasticity, but little is known about Ca(2+) dynamics at thorny excrescences, the complex spines on hippocampal CA3 pyramidal cells contacted by mossy fiber terminals of dentate granule cell axons. We have monitored subthreshold stimulus-dependent postsynaptic Ca(2+) transients in optically and ultrastructurally characterized complex spines and find that such spines can act as discrete units of Ca(2+) response. In contrast to the more common "simple" spines, synaptically evoked Ca(2+) transients at complex spines have only a small NMDA receptor-dependent component and do not involve release of calcium from internal stores. Instead, they result mainly from AMPA receptor-gated Ca(2+) influx through voltage-activated calcium channels on the spine; these channels provide graded amplification of the response of thorny excrescences to individual mossy fiber synaptic events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium signalling and synaptic plasticity at single hippocampal synapses

Analysis of synaptic transmission in the brain using purely electrophysiological techniques has proved problematic because of the large number of synapses on most neurons. The advent of confocal microscopy has made it possible to circumvent this problem by studying synaptically evoked calcium transients at single dendritic spines in organised brain tissue. We have examined two kinds of synapse ...

متن کامل

L-Type calcium channels are required for one form of hippocampal mossy fiber LTP.

The requirement of postsynaptic calcium influx via L-type channels for the induction of long-term potentiation (LTP) of mossy fiber input to CA3 pyramidal neurons was tested for two different patterns of stimulation. Two types of LTP-inducing stimuli were used based on the suggestion that one of them, brief high-frequency stimulation (B-HFS), induces LTP postsynaptically, whereas the other patt...

متن کامل

Endogenous zinc inhibits GABA(A) receptors in a hippocampal pathway.

Depending on their subunit composition, GABA(A) receptors can be highly sensitive to Zn(2+). Although a pathological role for Zn(2+)-mediated inhibition of GABA(A) receptors has been postulated, no direct evidence exists that endogenous Zn(2+) can modulate GABAergic signaling in the brain. A possible explanation is that Zn(2+) is mainly localized to a subset of glutamatergic synapses. Hippocamp...

متن کامل

Synaptic Activation of Presynaptic Kainate Receptors on Hippocampal Mossy Fiber Synapses

Kainate receptors (KARs) are a poorly understood family of ionotropic glutamate receptors. A role for these receptors in the presynaptic control of transmitter release has been proposed but remains controversial. Here, KAR agonists are shown to enhance fiber excitability, and a number of experiments show that this is a direct effect of KARs on the presynaptic fibers. In addition, KAR activation...

متن کامل

Mossy fiber-evoked subthreshold responses induce timing-dependent plasticity at hippocampal CA3 recurrent synapses.

Dentate granule cells exhibit exceptionally low levels of activity and rarely elicit action potentials in targeted CA3 pyramidal cells. It is thus unclear how such weak input from the granule cells sustains adequate levels of synaptic plasticity in the targeted CA3 network. We report that subthreshold potentials evoked by mossy fibers are sufficient to induce synaptic plasticity between CA3 pyr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 7  شماره 

صفحات  -

تاریخ انتشار 2001